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Abstract 

Argumentation, a key scientific practice, requires students to construct and critique arguments, 

but timely and large-scale evaluation of responses depends on automated text scoring systems, 

which rely on machine learning algorithms.  Recent work has shown the utility of these 

automated systems, as well as proposing to increase the use of machine learning for high 

complexity assessments.  Therefore, in this study, we investigated whether the construct 

complexity of an assessment item affected machine learning model performance.  We employed 

human experts to score student responses to 17 argumentation items aligned to 3 levels of a 

learning progression and randomly selected 361 responses to use as training sets to build 

machine learning scoring models for each item. We were able to produce scoring models with a 

range of scoring agreement between computers and humans, measured by Cohen’s kappa (M = 

.60; range .38 - .89).  Most models demonstrated good to almost perfect performance (kappa > 

.60).  We found that scoring models for more complex constructs, such as multiple dimensions of 

science learning or higher levels of a learning progression, had lower performance metrics as 

compared to models for items at lower levels.  These negative correlations were significant for 

three construct characteristics we examined, complexity, diversity and structure. In order to 

develop automated scoring models for more complex assessment items, larger training sets or 

additional model tuning may be required. 
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1. Introduction 

Assessing students’ argumentation, one that is among the most critical scientific practices 

proposed in the K-12 Framework (National Research Council, 2012) and the Next Generation 

Science Standards (NGSS; NGSS Lead States, 2013), is challenging due to the complexity of the 

construct (Gane et al., 2018). Assessing such a complex construct has gone beyond the capacity 

of the traditional multiple-choice items, and thus many suggest using performance-based 

constructed response measures. To make the proposed measures be accessible to teachers and 

students, we developed machine learning (ML) algorithms to automatically score students’ 

constructed responses of argumentation. This approach has great potential to engage teachers in 

using constructed responses of argumentation assessments in the classroom.  

However, we found it challenging to develop solid ML models that can generate accurate 

scores that are highly consistent with those assigned by human experts. Among those reasons 

that challenge the development of ML models, the underlying assessment construct of the 

assessment, as well as the training sources, may be particularly critical (Zhai, Haudek, Shi, et al., 

2020). A meta-analysis recently reported that assessment internal features, such as the 

complexity of constructs which the assessments tap, are critical factors that may moderate 

machine scoring accuracy (Zhai, Shi, & Nehm, 2020). However, there is limited empirical data 

to test this assumption specifically for argumentation assessments, and we have limited 

knowledge about the fluctuation of the human-machine score agreements due to the construct 

within a given performance assessment. Therefore, in this study we developed and investigated 

17 assessment items varying in construct characteristics. We employed the same strategy to train 

the computer to develop 17 ML models, one for each assessment item, holding the number of 

randomly sampled responses constant.  We examined the resulting model performance to address 

the research question: How are the item construct complexity, structure, and diversity associated 

with ML model performance? 

2. Assessment Construct 

Cronbach and Meehl (1955) suggest that construct is a postulated attribute of humans, 

which can be reflected in test performance. For example, making evidence-based arguments in 

science is deemed as a type of attribute of competent students. That is, we should be able to infer 

students’ attributes of evidence-based argumentation based on their performance in tests. In this 

case, making evidence-based arguments is an assessment construct. Science assessment practices 

fundamentally deal with evidence to infer the assessment constructs that delineate students’ 

scientific competence. What makes assessment practice complicated is that the assessment 

construct is usually complicated, diverse, and contains developmental features (Zhai, Haudek, 

Stuhlsatz, et al., 2020). In their study, Zhai, Haudek, Shi, et al. (2020) abstracted three 

fundamental features of ML-based science assessments: complexity, diversity, and structure. In 

this study, we adopted the three features as our analytical framework. 

According to Bloom’s taxonomy, assessment tasks may demand varying complex 

cognitive abilities (Forehand, 2010). In the past few decades, scholars in science education have 

been focused on a range of cognitive abilities, from students’ conceptual understanding of 

scientific ideas to reasoning ability in Complex tasks. The K-12 Framework (National Research 
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Council, 2012) further articulates that meaningful science learning integrates scientific practices, 

crosscutting concepts, and disciplinary core ideas. In these activities, students are required to 

move from simple memorizing knowledge, to analyzing, evaluating, and creating abilities to 

complete different tasks.  

Diversity reflects the combinations of different cognitive demands in performing a task. 

In dealing with three-dimensional science learning, the assessment is multifaceted. The cognitive 

demands during solving such a science problem may include multiple components (e.g., 

practices, disciplinary core ideas). The number and combinations of components of the cognitive 

demands that the assessment task requires to perform on the task feature the complexity of the 

construct. The more components required, the more diverse of the assessment construct is. 

Students are required to perform on science tasks by showing their ability to conduct practices 

and understanding of scientific knowledge. Compared to assessing such three-dimensional 

science learning, some assessments may only focus on one dimension of the construct, which is 

less diverse. 

Zhai, Haudek, Shi, et al. (2020) further argue that the assessment constructs used with 

ML reflects cognitive developmental features and denoted this feature as Structure. That is, 

students’ competence of and proficiency with science ideas and practices progresses while they 

receive instruction. For example, research on students’ learning progression explicitly lays out 

the cognitive structure of students’ learning and progress (Alonzo & Steedle, 2009; Osborne et 

al., 2016; Schwarz et al., 2009). 

3. Scientific Argumentation 

Scientific argumentation is the practice of reasoning within a domain by constructing and 

critiquing links between scientific claims and evidence (Osborne et al., 2004).  Argumentation is 

also foundational to scientific inquiry, as it requires the evaluation of evidence and claims 

(Walker & Sampson, 2013). As such, scientific argumentation is also identified as an essential 

scientific practice for students to learn as part of science education (NGSS Lead States, 2013). 

Over the last decades, many studies have examined how to implement scientific argumentation 

in the classroom to improve student practice (Cavagnetto, 2010; Driver et al., 2000). Concurrent 

with these efforts are a number of studies which investigate assessing students’ written scientific 

arguments, since writing is one of the prominent forms of engaging in argument (Lee et al., 

2014; McNeill, 2009). 

Many of the current analytic frameworks for scientific argumentation rely on Toulmin’s 

(1958) foundational perspective on argumentation (Sampson & Clark, 2008). Toulmin (1958) 

allowed for domain-specific elements within an argument, while recognizing some elements of 

the argument are universal across disciplines.  Following this framework, different statements 

within an argument hold different functions.  Claims are statements that assert a perspective, 

while data are used to support a claim and warrants justify the use of data for a claim.  Further 

work has expounded that argument activities include both construction of one’s own argument as 

well as considering arguments made by others (Berland & Reiser, 2011; Osborne, 2010). 

Osborne and colleagues (2016) proposed a learning progression for how middle school students 
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develop in scientific argumentation practice.  This progression identifies three different levels 

based largely on coordination of argument elements and includes both construction and critique 

of arguments as activities of scientific argumentation. 

4. Methods 

4.1. Study context and participants 

Assessing scientific argumentation in STEM education is critical in that it is one of the 

identified scientific practices proposed in the K-12 Framework (NRC, 2012) and the NGSS 

(NGSS Lead States, 2013). Assessing such a complex construct has gone beyond the capacity of 

traditional multiple-choice items, and the use of performance-based constructed response items 

may help better assess how students generate arguments (Sampson & Clark, 2008).  However, 

evaluating large numbers of student-written responses can be challenging for an individual 

teacher.  As such, we were interested in developing ML scoring models for middle school 

argumentation responses, aligned to a learning progression for the development of argumentation 

skills at those levels.  We collected responses from 931students from science classrooms in 

grades 5-8 from two school districts in California. Student responses were collected 

electronically via Qualtrics. Sets of items were sequenced differently in assessments given to 

different school districts, thus leading to different numbers of responses collected for each item.    

4.2. Assessment tasks 

We developed a total of nineteen constructed response assessment items aligned to a 

learning progression for argumentation for middle school students (see Wilson et al., under 

review). These items targeted different levels of the learning progression and engaged students in 

constructing and/or critiquing arguments (see example items; Figures 1 and 2).  For each item, 

students had to write their own answer; a few items required students to choose between a 

fictitious character’s argument followed by an open response portion which was later dropped 

from analysis (see section 4.4. below). The items were divided into 3 item sets based on science 

contexts: sugar dissolving in water (S), the kinetic motion of gases (G) and bacterial growth (B). 

Coding rubrics for the student responses were developed with each item and each rubric had a 

different number of possible codes intended to capture the different quality of student 

performance in argumentation within a given item.  

Here we present a sample assessment task item from the sugar dissolving in water context 

(Figure 1).  Preceding items in the sugar set, set up a scenario using arguments from competing 

fictitious characters about why sugar cannot be seen when stirred in water. In this item, students 

are presented with one character’s argument, a data table and a set of statements from a fictitious 

teacher.  Students are asked to critique one of the fictitious character’s argument.  This item is 

aligned to level 2a in a learning progression (Osborne et al., 2016), since it requires students to 

provide a counter-critique to another person’s argument.  The response coding rubric for this 

item had four possible levels to rank students’ responses based on if they were able to provide a 

valid critique based on evidence. 
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Figure 1. Sugar 4 item 

 
4.3. Coding of the construct characteristics of assessment tasks  

 Coding scheme. We developed a coding scheme for characteristics of the nineteen 

assessment items.  We borrowed from three existing frameworks (Osborne et al., 2016; NGSS 

Lead States, 2013; Zhai, Haudek, Shi, et al., 2020) to capture different characteristics relevant to 

machine learning, science learning and scientific argumentation.  Using these frameworks, we 

examined three components (Complexity, Diversity and Structure) which identified levels of 

complexity and sophistication relevant to our item sets (Table 1).  

For Complexity, we identified four different tasks, ranging in difficulty, embedded in the 

assessment items.  This component captures the cognitive processes the student must engage in 

to complete the question, and loosely approximates Bloom’s taxonomy categorization (Bloom et 

al., 1956).  Items ranged from low-level tasks like identifying provided information in the item to 

high-level tasks like evaluating multiple pieces of information. For Diversity, we examined if 

each item engaged students equally in different dimensions of science learning to produce the 

desired responses; our levels ranged from one to three based on identified dimensions in science 

learning. We reasoned that items that engaged multiple dimensions of science learning (e.g. cross 

cutting concept and argumentation) would be more difficult.  Since all items were designed to 

assess argumentation, all items engaged at least one science practice (Level 1).  We examined 

each assessment task and the associated scoring rubrics to identify if other dimensions were 
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explicitly necessary in a student’s response to be awarded the highest score for an item.  Finally, 

for Structure, we examined which level of a learning progression for scientific argumentation the 

item was aligned with.  Our item coding scheme ranged over three levels to reflect the critical 

activities within levels of an empirically validated learning progression. 

 

Table 1. Developed coding scheme for three item characteristics relevant to machine-learning 

scored assessments. 

Characteristic Level 1 Level 2 Level 3 Level 4 

Complexity 

 

 

 

Memorization  

Item provides 

which knowledge 

to use 

Apply 

Item requires 

students to 

possess the 

knowledge to use 

Evaluate 

Students use data 

or information to 

reach a 

conclusion  

Analyze 

Students use or 

integrate 

multiple data or 

information to 

reach conclusion 

Diversity 

 

 

Only engages one 

component of 

three-dimensional 

learning 

Engages two 

components of 

three-dimensional 

learning 

Engages three 

components of 

three-dimensional 

learning 

N/A 

Structure 

 

Item requires 

identification of 

claim or evidence 

or provide a 

claim or evidence 

Item requires the 

construction of a 

warrant or 

complete 

argument 

Item requires a 

comparative 

argument, critique 

of an argument or 

a counter-claim 

N/A 

Example items and codes. Here we present two examples of item coding, to illustrate 

high- and low- level item characteristics.  First, we present the coding characteristics for item S4 

(see Figure 1), as an item with overall high complexity of underlying assessment constructs.  We 

coded this item as a level 3 in Structure, since it requires providing a critique of a character’s 

argument.  We coded the item as a level 4 in Complexity, since it requires students to consider 

and evaluate multiple pieces of data and potential statements from the teacher.  Then students 

must decide which piece of evidence to use and incorporate the evidence into a critique, which 

appropriately connects to the original argument.  Finally, we assigned this item to Diversity level 

3, since it engages students in all three dimensions of science learning to provide a high-quality 

response.  The item is aligned with the practice of Engaging in Argument, specifically critique.  

This item engages students in disciplinary core ideas, related to chemical and physical changes, 

to make sense of the provided data and provide a valid critique. Finally, it requires students to 

attend to the crosscutting concept of Energy and Matter, specifically the idea that matter (atoms) 

is conserved. 

We contrast this example with an item in the context of gas diffusion (G1; Figure 2).  

This is the first item in this context subset, and students are introduced to two fictitious 

characters and their differing ideas on how gases move in a given space.  These characters and 
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their ideas will be used repeatedly through the context subset, but this first item displays 

relatively low complexity of constructs.  We coded this item for Structure as a level 1, since it 

asks students to identify another person’s (character’s) claim. We coded the item as a level 1 in 

Complexity, since it requires students to re-iterate information that is presented to them as part of 

the set-up of the item.  For this item, students must only describe Charlie’s model; the item does 

not require students to analyze or do anything else with Charlie’s model.  Finally, we assigned 

this item a Diversity code of level 1 since it engages students directly in only one dimension of 

science learning to provide a high-quality response.  The item is aligned with the practice of 

Engaging in Argument but does not require explicit use of disciplinary ideas or cross cutting 

concepts to produce a high-quality response.  Although subsequent items in this set will require 

additional dimensions, this item does not require students to directly use their knowledge of 

particle motion to respond to the prompt.  Thus, other science dimensions are not present for this 

specific item.  

Figure 2.  Gases 1 item 

 

Coding of assessment tasks. After developing the assessment task coding scheme and 

defining generic examples for each characteristic at each level, two coders independently coded 

the nineteen items on all three components.  We compared codes on all characteristics and coders 

met to discuss any codes in disagreement.  During these consensus discussions, coders reviewed 
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both the assessment items and response coding rubrics to see which elements were necessary for 

a complete and full answer. We used the consensus codes of the items as the final codes for item 

complexity. 

4.4. Machine learning algorithmic model development.   

Human coding of responses. For each set of items, two coders were trained on the 

associated coding rubrics for each item. The two coders went through multiple rounds of training 

using a random subset of 150 student responses to each item. Training rounds were iterated until 

interrater reliability (Cohen’s kappa; k) between the coders was > 0.6 on each rubric component 

or until three rounds of training were completed. Cohen’s kappa for the last training round is 

indicated in Table 1. Disagreements on scores in the training round were resolved by consensus 

discussion between coders. For some items in the gases contexts, we only have after discussion 

consensus scores for the training round and cannot provide Cohen’s kappa (N/A in Table 2). The 

remaining data set of student responses was split into two subsets and each coder scored one 

subset independently.  

We calculated a diversity index, evenness, for the human assigned scores to responses to 

each item (Pielou, 1966). This measure represents the distribution of scores at the various levels 

of coding rubrics, where evenness for an item can vary between 1 (indicating responses are 

equally distributed, or balanced, across all levels of the rubric) to 0 (responses are only in one 

level of the rubric). In this study, the mean evenness is .80, which indicates that most items had 

responses close to equally distributed across levels of the rubrics. 

Machine learning algorithmic model development. Since each item had a different 

number of total responses collected, we randomly selected a subset of 361 responses for each 

item in order to have an equal number of responses for training individual machine learning 

models. We used a supervised ML text classification approach to assign student written 

responses a score (Aggarwal & Zhai, 2012). During our ML process, each student response is 

treated as a document and the coding rubric is treated as a multi-level class. The computerized 

scoring system then generates predictions on whether each given document is a member of each 

class. We use text processing based on natural language processing to extract text features from 

responses which are then used as inputs for an ensemble of eight individual algorithms, common 

in ML classification applications, to generate predicted scores (Jurka et al., 2013).  The computer 

model is generated and validated using a 10-fold cross-validation approach.  

During model development, we decided to drop two items in the bacteria context, since 

these items were in a different format (i.e., multiple-choice followed by explaining your answer) 

than all other items.  Since we did not know how the multiple-choice selection would influence 

student explanations, we did not generate ML models for these two items and dropped them from 

subsequent analysis.  We generated a ML model for each of the remaining 17 items individually, 

using the same set of text processing procedures and input model parameters for each model, 

including stemming text, removal of stopwords and numbers, using unigrams and bigrams.  In 

usual practice for developing scoring models, one would optimize model performance by 

tweaking tuning parameters or text processing strategies (Madnani et al., 2017).  However, this 

complicates comparing model performance across items, as the model performance is dependent 
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on assessment items (and collected responses) as well as the technical parameters used to build 

the model (Madnani et al., 2017; Shermis, 2015).  By using a consistent set of parameters for all 

models in this study, we hoped to investigate the role of the assessment item characteristics in 

model performance. 

 

Table 2. The characteristics of the item tasks and the interrater reliability of human coders on 

student responses. 

Item Complexity Diversity Structure 

# of levels 

in rubric 

#  of 

responses 

H-H reliability 

(Cohen's kappa) Evenness 

S1 2 2 2 4 775 0.81 0.797 

S2 1 1 1 2 765 0.75 0.999 

S3 1 1 1 2 763 0.83 0.998 

S4 4 3 3 4 754 0.53 0.873 

S5 4 3 3 4 744 0.72 0.912 

B1 1 1 1 3 549 1 0.786 

B2 1 1 1 3 527 0.97 0.777 

B3 2 3 2 4 498 0.92 0.855 

B4 3 2 3 4 449 0.81 0.732 

B5 4 3 3 4 411 0.97 0.895 

B6 2 1 2 3 361 1 0.487 

G1 1 1 1 2 848 0.82 0.597 

G2 1 1 1 2 840 0.85 0.758 

G3 3 3 2 4 801 N/A 0.795 

G4 3 3 2 3 770 N/A 0.974 

G5 4 3 2 3 669 N/A 0.628 

G6 4 3 2 3 642 N/A 0.941 

G7 3 2 3 3 597 N/A 0.771 

G8 4 2 3 4 548 N/A 0.635 

The computer models produce a predicted classification for each response that can be 

compared to the human assigned holistic score. For each computer model, we calculated 

accuracy, Cohen’s kappa (k), a measure of interrater reliability, and Spearman rank-order 

correlations (rs, N=361) between the computer predicted score and human assigned score. We 

examined the accuracy of the ML models built using equal numbers of responses in the training 

set for all models and used a consistent set of text processing procedures. We used benchmarks 

of moderate (k>.4), substantial (k > .6) to near perfect (k >.8) agreement between human and 
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computer assigned scores as defined by Landis & Koch (1977) for overall evaluation of model 

performance. 

5. Results 

Overall, we had a good range of item characteristics over all levels of the item 

components (see Table 2).  Structure showed the most balanced distribution of items across 

levels, with nearly equal amounts of items over the three levels of scientific argumentation 

practice. We found that most items engaged students in multiple dimensions of science learning 

(Diversity), with three-dimensional items being most common. Finally, we found that most items 

displayed high (evaluate) or low (memorization) level Complexity, with fewer items in the 

intermediate levels. 

5.1. Machine learning model performance across items 

First, we developed a total of 17 ML models using a consistent set of model parameters 

and an equal number of student responses. The models showed a range of performance metrics 

(Table 3). The mean Cohen’s kappa was substantial (M= .60, SD= .15) and the mean accuracy 

was fairly high (M= .79, SD= .11).  We developed five ML models for items in the sugar context 

with an average Cohen’s kappa of .65 and a range of .55 to .80. For the four bacteria items, we 

developed a ML model for each with an average k= .69 and a range of .46 to .89. The eight gas 

items proved the most challenging to develop scoring models for, as model performance ranged 

from moderate to substantial (Landis & Koch, 1977). The eight gas items show decreased model 

performance, with a moderate average k= .52 and a range of .38 to .65. We found that the highest 

performing models in the gas context had items with only 2 or 3 scoring levels.  

Since the coding scheme was ordinal in nature, we also calculated Spearman’s rho, a non-

parametric measure of correlation, as a measure of model accuracy to account for “near misses” 

in the computer scoring.  We found that all but one model in the sugar and bacteria contexts had 

a rho> 0.7, which has been suggested as a threshold for quality model performance (Williamson 

et al., 2012).  As expected, this one model (B3) also had the lowest accuracy and agreement 

measures for these contexts.  Interestingly, this item had fairly high human-human IRR measures 

and was at level 1c in the learning progression.  We note that other items in these contexts 

showed better model performance even when at a higher learning progression level (e.g. S4) or 

exhibited lower human-human IRR (e.g., S2) for the training set. Surprisingly, none of the 

models for items in the gases context produced a rho greater than 0.7, although five of these 

models had rho > 0.6.  Despite these challenges, correlations between human and model scores 

were significant at the p<0.01 level.  From these findings, along with the model Cohen’s kappa 

results, we conclude that we have well-performing models for items in the sugar and bacteria 

context, with a range of model performance for items in the gases context.  For all remaining 

analyses, we used Cohen’s kappa as the measure of model performance, since it corrects 

agreement between coders (i.e. human & computer) for chance agreement (McHugh, 2012). We 

performed a Kruskal-Wallis H Test to examine if the context of the item influenced the ML 

model performance, as measured by Cohen’s kappa. No significant differences (Chi-square = 
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3.55, p = .169, df = 2) were found among the three item contexts.  Therefore, we collapsed items 

and models from all contexts into a single data set for further analysis. 

 

Table 3. Machine-Human agreement measures on argumentation tasks 

Item k Accuracy rs
*

 

S1 0.62 0.77 0.788 

S2 0.75 0.87 0.740 

S3 0.80 0.90 0.811 

S4 0.55 0.73 0.715 

S5 0.55 0.69 0.708 

B1 0.89 0.94 0.947 

B2 0.80 0.89 0.841 

B3 0.46 0.65 0.684 

B6 0.61 0.91 0.724 

G1 0.62 0.91 0.619 

G2 0.65 0.89 0.653 

G3 0.46 0.65 0.650 

G4 0.51 0.69 0.640 

G5 0.62 0.83 0.640 

G6 0.40 0.65 0.556 

G7 0.50 0.73 0.482 

G8 0.38 0.75 0.488 

Note. k = Cohen’s kappa; rs = Spearman’s rho.  

*All rs values p<.01 

 

Further, we looked at the relationship between evenness, or the distribution of responses 

in the levels of an item rubric and model performance. Surprisingly, there was no significant 

correlation between the balance of response across levels and Cohen’s kappa of the resulting 

model (Pearson’s r= .08, p= .765, N= 17).  

5.2 Association of item complexity with model performance 

To examine if there was any association between the different construct characteristics of 

the items, we conducted a series of pairwise Fisher’s exact tests.  All three pairwise tests 

(Complexity by Diversity; Complexity by Structure and Diversity by Structure) returned 

significant results (Fisher’s exact test 2-sided, p< .01), suggesting these three characteristics are 

not truly independent in this sample of items.  This is not unsurprising, in that items that ask 
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students to critique arguments (i.e., high level of Structure) generally require students to analyze 

or evaluate (i.e. higher level of Complexity) as opposed to using memorized information, for 

example. Since the three construct characteristics were not independent, we could not combine 

all item variables (i.e. characteristics and levels) into a single statistical model.  Instead, to 

answer our research question, we examined how the different characteristics of construct 

complexity are associated with model performance for each characteristic alone.   

First, we examined the model performance using Cohen’s kappa by levels of Complexity, 

or item task (Figure 3).  We found that models for items at level 1 of Complexity had better 

performance than for models for items at all other levels.  We see that all models at level 1 of 

Complexity achieved substantial agreement as measured by Cohen’s kappa (k> .6). On the other 

hand, we found that a majority of models for higher Complexity items (levels, 2, 3 and 4) did not 

achieve even this substantial performance threshold. The median model performance for level 2 

items was slightly higher than model performance for levels 3 and 4. For level 2 items, we see 

that most models had a performance in the range of .5 to .6, which is in the moderate to 

substantial agreement. We found that models for level 3 items had the narrowest range of 

performance while level 4 items showed a much larger range of performance. Spearman’s rho 

correlation coefficient was used to examine the relationship between Cohen’s kappa and level of 

item Complexity.  There was a significant negative correlation between the two variables        

(rs= -.752, p< .001, N=17).  

 

Figure 3. A box plot of model performance for items exhibiting different levels of 

Complexity. The shaded box represents middle 50% values and whiskers extend to 

maximum and minimum values. The thick black line represents the median value. 
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5.3 Association of item diversity with model performance 

Next, we examined the model performance using Cohen’s kappa by levels of Diversity, 

or the number of science learning dimensions.  We found that models for items at level 1 of 

Diversity had better performance than for models for items that engaged multiple dimensions of 

science learning (levels 2 and 3)   We see that all models at level 1 of this characteristic were 

above substantial agreement between codes (k> .6). Conversely, we found that only a few 

models for higher Diversity items achieved even the substantial performance benchmark.  The 

median model performance for level 2 items was slightly lower than median model performance 

for level 3; otherwise, the model performance for level 2 and 3 items was very similar. Models 

for level 3 Diversity items showed a slightly narrower range of performance, with nearly all 

models exhibiting between moderate and substantial agreements. Spearman’s rho correlation 

coefficient was used to examine the relationship between Cohen’s kappa and level of item 

Diversity.  There was a significant negative correlation between these two variables (rs= -.718, 

p< .01, N=17). 

 

Figure 4. A box plot of model performance for items exhibiting different levels of 

Diversity. 

 
5.4 Association of item structure on model performance 

We examined how the structure of the item, aligned to cognitive levels of a learning 

progression, influenced model performance (Figure 5). We found that in general, models for 

items at Structure levels 2 and 3 had lower Cohen’s kappa than for items at level 1.  All level 1 

items for Structure exceeded the substantial Cohen’s kappa benchmark. We found that the 

measures of the average of Cohen’s kappa for models at levels 2 and 3 are nearly the same, but 

level 2 models show a larger range of performance. For level 2 items, nearly all models exceeded 

the moderate performance benchmark, with a few models exceeding the substantial agreement 
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benchmark.  The level 3 items showed a lower range of performance with no model exceeding 

the substantial performance threshold. Spearman’s rho correlation coefficient was used to 

examine the relationship between Cohen’s kappa and level of item Structure.  There was a 

significant negative correlation between the two variables (rs= -.764, p< .001, N=17). 

 

Figure 5. A box plot of model performance for items exhibiting different levels of 

Structure.  

 

6.  Discussion 

Though ML has great potential to be widely applied in science assessments, the accuracy 

of machine scoring remains a “black box” and draws great concerns. A recent, critical review 

suggested that examining factors that impact machine scoring and developing generalizable 

algorithms is critical to further increase the usability of ML in science assessments (Zhai, Yin, 

Pellegrino, et al., 2020). With this in mind, the current study examined a critical internal feature 

of assessments (Zhai, Shi, & Nehm, 2020), characteristics of the target construct, and how these 

features are associated with machine scoring accuracy. Aligned to an ML-based assessment 

framework (Zhai, Haudek, Shi, et al., 2020), we identified three critical characteristics of 

construct: complexity, diversity, and structure.  Our empirical findings suggest that construct 

characteristics do associate with ML model performance.  We found negative and significant 

correlations between item characteristics and ML model performance for all three item 

characteristics we examined. The difference in performance is most pronounced at the lowest 

level or least sophisticated for each characteristic when compared to all other higher levels.  That 

is, for a given construct characteristic, we observed large differences in model performance when 

comparing level 1 to any of the higher levels, but less difference in performance between higher 

levels (e.g. level 2 vs. level 3 items).  It could be that tuning model parameters, as is usual 
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practice in developing ML models (Madnani et al., 2017) , may improve model performance for 

mid-level constructs more so than higher-level constructs.   

We examined each item characteristic independently to determine the association with 

scoring model performance. First, we looked at four levels of item Complexity, the way students 

use knowledge in the item to generate a response.  We found that higher levels of Complexity 

had decreased machine scoring performance; for the most part, the four levels of Complexity 

showed decreasing performance in a fairly negative linear relationship, with level 4 showing a 

large range of different model performance.  As expected, tasks with simpler activities (i.e., 

using the information provided in the item) showed better machine scoring performance than 

scoring performance for more complex tasks, likely due to more similar text in the responses 

when students use information from the item.  In their previous study, Zhai, Haudek, Shi et al. 

(2020) found the majority of constructed response items scored with ML models were of 

relatively low Complexity. In our study, we had more higher-level items, which exhibited lower 

model performance.  This represents a continued challenge for applying ML in science 

assessment: the need to develop advanced machine algorithmic models to better suited to 

accurately score higher complexity assessment items. 

We also studied the number of science learning dimensions, or Diversity, engaged by an 

item.  Again, we found that higher levels of Diversity had decreased model performance; this 

was most obvious when comparing the accuracy of models for level 1 items to models for items 

at levels 2 and 3. This finding provides evidence that producing ML models for single dimension 

science items is feasible.  On the other hand, we found very little difference in model 

performance between items at levels 2 and 3.  This suggests that the challenge of developing ML 

models for performance assessments is for any multidimensional item, not necessarily a specific 

dimension or number of dimensions. As has been noted by others, one of the challenges of 

scoring three-dimensional science responses is the expected integration of knowledge across 

dimensions, and that single holistic score may represent student facility with different 

dimensions (Gane et al., 2018; Zhai et al., 2021).  In such cases, a sufficiently large training set 

of responses may be required for the ML model to recognize multiple patterns for the same score 

(Wang et al., 2021). 

For our third characteristic, we examined levels of item Structure, or the alignment to a 

cognitive model of development, as documented in a learning progression for argumentation.  

We found that higher levels of Structure had decreased model performance in a somewhat 

negative linear relationship, with level 2 showing a larger range of different model performance 

than level 3.  As expected, items aligned to lower levels of the progression showed better model 

performance than models for more complicated argumentation tasks, like creating a comparative 

argument. This aligns with empirical evidence for the learning progression itself.  Higher levels 

of argumentation require more components to be successful (e.g. comparative statements, 

additional warrants) as well as be structured appropriately.  This is not only challenging for 

students to master, but the additional components and structure of the text in responses to these 

higher-level items require larger training sets or additional syntactic features of the text. Building 

from recent findings from argument mining may be a promising way forward to score 

argumentation tasks (Lawrence & Reed, 2020), but these general strategies must also be 
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integrated with dimensions of science learning and may not be generalizable to other science 

practices.    

 Finally, we also examined a few characteristics of the labeled data sets used to train each 

ML model.  We note a positive association between human-human interrater reliability and 

human-computer interrater reliability, as has been noted before (Powers et al., 2015; Williamson 

et al., 2012). This confirms the importance of having a well-designed coding rubric with discrete 

criteria, in order to maximize human coder agreement on the training set. This also raises the 

possibility that some of the item complexity may impact human scoring reliability.  As item and 

response complexity increases, it may be more difficult for human coders to assign scores to 

responses, as the structure of language in responses becomes more complex or meaning is 

inferred by readers. 

Further, we looked at the relationship between evenness, or the distribution of responses 

in the levels of an item rubric and model performance.  Surprisingly, there was no association 

between the balance of response across levels and model performance. One possible reason for 

this result is that all of our items displayed a distribution of responses across coding levels that 

were above some frequency threshold, which serves as a “lower limit” for training scoring 

models.  Although, we note that several of our items (e.g. B3, G5, S1) had specific code levels 

that contained < 6% of the responses and therefore provide very few examples of a given level in 

the training set.  Another possible interpretation of this finding is that the diversity index of 

evenness we used was not sensitive enough to differences in code distributions.  

A full examination of student performance on the set of items used in this study is 

reported elsewhere (Wilson et al., under review). However, we did check to see if item difficulty, 

based on the human assigned score to each response, was correlated with model accuracy.  

Although we found a positive association, it was not significant, suggesting that item 

characteristics influence ML model performance and not just student performance. 

6.1 Implications 

Our study has provided evidence that science item construct characteristics associate with 

ML-model performance. It is critical to identify and understand these effects in order to identify 

the possibilities and limitations of ML-based scoring of science assessments.  As science 

teaching and learning moves to align with multidimensional learning advocated by the NGSS, 

accurately classifying multiple dimensions using ML models will be necessary (Maestrales et al., 

2021).  This also highlights a challenge to advancing ML-based assessments in science by 

aligning these assessments with models of cognitive development (Zhai, Haudek, Shi, et al., 

2020).  Extrapolating from our findings, producing ML models for increasingy sophisticated 

cognitive abilities will take additional model tuning, more iterative development cycles, novel 

technical features of text processing and/or larger training sets of labeled responses.  If we want 

to develop and deploy ML-based assessments in science at scale, then it is critical to move away 

from designing items and models on a “one-off” basis aligned to scattered constructs, but toward 

integrating design theories with assessment practices and incorporate all phases of assessment 

into a validity process (Gane et al., 2018; Zhai et al., 2021). Further, for assessment developers to 

learn what works across contexts, we must not only focus on outcomes of the models (e.g. 

accuracy) but technical features of the model as well as item characteristics (Zhai, Shi, & Nehm, 
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2020; Zhai, Yin, Pellegrino, et al., 2020).  Finding these common features of success and 

challenge is likely to lead to faster development and wider implementation of ML-based 

assessments as part of formative assessment in science classrooms. 
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