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Abstract 
Artificial intelligence (AI) is increasingly used to assist in educational assessment, yet 
discrepancies between AI scores and human scores can arise. This study investigates the 
alignment between a convolutional neural network (CNN) model and human raters in scoring 
student-constructed scientific models, with a focus on how human oversight can affect 
differences. We analyzed 1,151 student models from a high school curriculum, which was 
evaluated on a rubric with multiple categories and compared initial human scores to AI-predicted 
scores. Cases of AI-human score mismatches were flagged for expert human re-evaluation. 
Quantitative analyses assessed the level of AI-human agreement and the consistency of human 
scoring upon review, while qualitative analyses examined the persistently discrepant cases to 
uncover underlying issues. Results show that human scoring was not perfectly stable—some 
scores changed upon review—and overall AI-human agreement was high for many categories 
but varied where rubric criteria were ambiguous. Notably, certain rubric categories consistently 
showed discrepancies due to unclear scoring criteria or AI misinterpretations of student work. 
These findings demonstrate that while a well-trained AI can achieve performance comparable to 
human raters, human oversight remains essential to address nuanced or uncertain cases. The 
study contributes insights into improving rubric design and integrating AI in a “human-in-the-
loop” grading process to enhance reliability and fairness in automated assessment. 
 

Objectives 
Modeling is crucial for enhancing students' knowledge-in-use, particularly through multimodal 
assessments in the realm of three-dimensional science learning (NGSS, 2013). Despite their 
significance, the intricate and diverse nature of these models complicates their evaluation (Lee et 
al., 2023). Assessing models intended to measure students' knowledge-in-use is further 
complicated by the multifaceted nature of the cognitive processes involved (Li et al., 2024). AI-
assisted assessment has emerged as a promising approach to manage the heavy workload of 
grading complex student work. In science education, researchers have explored automated 
scoring of student-constructed scientific models and diagrams. For example, convolutional 
neural network (CNN) models have achieved high accuracy in classifying student-drawn 
responses into rubric categories—one study reported a CNN correctly predicted up to 97.7% of 
image-based responses, matching or exceeding typical human rater accuracy (von Davier et al., 
2022). Moreover, the CNN was even able to correctly score some responses that human graders 
had initially scored incorrectly (von Davier et al., 2022) These advances suggest AI can potentially 
take on grading tasks with efficiency and consistency. However, fully autonomous scoring is not 
without challenges. Prior research highlights concerns about the reliability and trustworthiness of 
AI in nuanced evaluation tasks (Kortemeyer & Nöhl, 2024). In high-stakes contexts, automated 
grading is considered “high-risk,” and regulations mandate that human oversight is obligatory 
when AI is used for evaluating learning outcomes (European Union, 2024). This underscores that 
human experts must remain in the loop to ensure grading integrity (Kashy et al., 2001). 



A key challenge in AI-assisted grading is ensuring clarity and alignment of the scoring 
rubric for both humans and AI. Ambiguously defined criteria can lead to inconsistent judgments. 
As prior studies note, the language and descriptors in a rubric are critical—an ambiguous rubric 
cannot be accurately or consistently interpreted by instructors, students or scorersu.osu.edu. 
Even trained human raters can diverge in their scoring if rubric guidelines are unclear or open to 
interpretation. Rater training and calibration improve agreement but never eliminate differences 
entirely (Jonsson & Svingby, 2007). These issues imply that any AI trained on human-generated 
scores may also reflect or even amplify inconsistencies stemming from rubric ambiguity. 

Given these considerations, it is important to examine how human and AI scores 
compare, where they diverge, and how involving humans in the loop can resolve discrepancies. 
Human experts bring contextual understanding and can judge complex or borderline cases, 
whereas AI provides efficiency and consistency in straightforward cases. The interplay between 
the two raises several questions. This study addresses the following research questions: 

1. RQ1: Human Score Stability – How consistent are human scores upon reevaluation? 
Specifically, when examining cases flagged due to discrepancies between AI predictions 
and original human scores, do independent raters uphold the initial judgment or diverge, 
suggesting instability or ambiguity in rubric criteria? 

2. RQ2: AI-Human Agreement – To what extent do AI-predicted scores align with human 
raters’ reevaluation? What is the magnitude of agreement, and does it vary across 
different rubric categories? 

3. RQ3: Scoring Inconsistencies – What characterizes cases where AI and human scores 
remain consistently inconsistent, despite reassessment? 

a. RQ3a: Persistent AI Disagreement – In which rubric categories does the AI 
systematically fail to align with human scorers, and what visual or 
representational features contribute to these mismatches? 

b. RQ3b: Human Instability – In which rubric categories do human raters 
themselves exhibit persistent disagreement, and what rubric ambiguities or 
representational complexities drive this variability? 

By investigating these questions, we aim to illuminate the reliability of AI-assisted scoring and 
the essential role of human oversight. We anticipate that our findings will highlight categories 
where rubric definitions may need refinement and demonstrate how a human-in-the-loop 
approach can improve the overall scoring process. Ultimately, this work seeks to contribute 
guidelines for integrating AI into educational assessment in a way that enhances efficiency 
without sacrificing validity and fairness. 
 

Methods 
This study situated in an automated formative assessment system leverages AI to evaluate 
students' multi-modal assessments and offer tailored feedback. The system bolsters formative 
assessment practices within a high school physical science curriculum named "Interactions" 
which promotes three-dimensional learning, with curriculum materials aligned with the Next 
Generation Science Standards (NGSS, 2013). This study uses the "Electroscope" modeling task 
(Figure. 1) and employs a 13-category rubric for assessing students' knowledge-in-use 
performance and aligned to specific model components and/or relationships (Kaldaras et al., 
2022). Categories 1-10 evaluate the comparative presence or absence of charges on electroscope 
components in scenarios A and B, while Categories 11-13 identify inaccuracies in responses. For 
instance, Category 13 checks whether the rod or the entire electroscope in Scenario A is 

https://u.osu.edu/cvmofficeofteachingandlearning/2018/03/19/rubrics-add-transparency-consistency-and-efficiency-to-grading/#:~:text=rubric%20for%20the%20population%20of,challenging%20aspects%20of%20its%20design


uncharged in a model. The human-human interrater reliability by Krippendorf’s alpha exceeded 
0.8 for most categories, indicating substantial agreement. For this study, we only focus on the 
first 10 categories (C1-C10) given the categories 11-13 were designed to capture inaccuracy.  

Machine Algorithm Development and Validation. We developed algorithms based on 
Convolutional Neural Networks (CNN) to score student models and compared these predicted 
scores with those from human (Krizhevsky & Hinton, 2012). The validity of the CNN model was 
confirmed using a 10-fold cross-validation method. The 1151 student models were randomly 
divided into ten groups, assigning 10% for testing and 90% for training. The training set was 
further divided into validation and actual training sets using a 1:4 ratio. For feature extraction, 
we employed the ResNet-18 architecture, implemented our model in Pytorch, and optimized 
using Adam with a learning rate of 1e-4. The networks underwent training for 500 epochs on an 
NVIDIA GeForce GTX 1080Ti graphics card. We determined the human-machine scoring 
agreement (HMA) accuracy during both the training and validation phases. After each epoch, the 
validation accuracy was computed, and the network weights were stored. Following training 
epochs, validation accuracy was determined using the weights from the epoch with the highest 
validation accuracy (Lu & Tran, 2017). We averaged the validation accuracies across folds 
throughout iterative training. Table 1 provides the results as agreement between human and 
machine assigned scores.  

Data Preparation. During the model’s testing phase (N=327), any discrepancy between 
the AI’s score and the original human-assigned score was flagged for further review. In other 
words, every instance where the deep learning model’s predicted score did not match the human 
original score (across any of the 10 rubric categories) was identified as a flagged case. All 
flagged responses were independently re-evaluated by two expert human raters who were well-
versed in the scoring rubric. During this rescoring phase, each rater was blinded to both the 
original human scores and the machine-predicted scores to prevent any biases or influences. 
They reassessed each response strictly according to the rubric criteria, assigning binary scores (0 
or 1) independently. The raters also provided notes indicating the rationale behind their scoring 
decisions, especially when facing uncertainty or ambiguity. Importantly, no consensus 
discussions were held between the raters after rescoring. Instead, both sets of rescored data were 
preserved independently, allowing us to analyze inter-rater reliability directly. This design 
enabled us to measure and report exact inter-rater reliability between the two human raters 
without the potential influence of discussions or consensus-building, providing an authentic 
assessment of rubric clarity and scoring challenges. 
Analytic Strategies for Each Research Question 

For Research Question 1 (Human Score Stability), we aimed to examine the stability and 
consistency of human scores across time by comparing initial consensus-based human scores and 
subsequent rescoring performed independently by two new raters (Rater 1 and Rater 2). We used 
Fleiss' Kappa to evaluate the level of agreement among these three human-generated scores—
original human consensus, Rater 1, and Rater 2—because Fleiss' Kappa is specifically designed 
for assessing agreement among multiple raters simultaneously. Cohen’s Kappa was calculated to 
evaluate the level of agreement between the two independent raters (Rater 1 and Rater 2). This 
metric is suitable for examining pairwise agreement on binary-coded rubric categories. This 
analysis allowed us to comprehensively gauge the stability and reliability of human scoring 
across different time points and raters, identifying any systematic variability that might indicate 
inconsistencies in rubric interpretation or scorer judgment. 



For Research Question 2 (AI-Human Agreement), we explored the magnitude and 
patterns of agreement between the AI-generated scores and human-generated scores, specifically 
after human rescoring. Initially, by definition, AI scores had zero percent agreement with the 
original human consensus for the cases selected, as flagged discrepancies were intentionally 
chosen based on disagreement. However, it remained essential to quantitatively evaluate the 
degree to which the human rescores aligned with AI scores upon reassessment. Therefore, we 
applied Fleiss' Kappa to measure the agreement among Machine predictions, Rater 1, and Rater 
2 scores simultaneously. This analysis provided insight into whether the newly reassigned human 
scores tended to align more closely with AI assessments, thus offering important insights 
regarding the potential accuracy or systematic biases within the AI model's scoring mechanism. 

Finally, for Research Question 3 (Scoring Inconsistencies), our strategy involved 
identifying and qualitatively analyzing persistent discrepancies that could not be resolved 
through rescoring. Specifically, we isolated cases where consistent disagreement was observed 
between AI and human raters, as well as between raters themselves. These cases were extracted 
based on their continuous disagreement across all scoring attempts—original human consensus, 
independent human rescores (Rater 1 and Rater 2), and AI predictions. A qualitative thematic 
analysis of these cases was then conducted, using rater annotations and comments to identify 
underlying causes for discrepancies. This allowed us to determine whether persistent scoring 
disagreements arose from ambiguities or deficiencies in rubric clarity, limitations in the AI 
scoring model's feature interpretation, or a combination of these factors. This qualitative analysis 
aimed to provide rich, nuanced insights into the conditions under which scoring remains 
problematic, directly informing future improvements in rubric design, AI model training, and 
overall assessment strategies. 
 

Results 
RQ1. Human Analysis Stability 

To address RQ1, we examined the degree of consistency among human scores over time 
by comparing three sources: the original consensus human score (used as ground truth during AI 
training), and two independent rescoring judgments (Rater 1 and Rater 2) on cases previously 
flagged for AI-human disagreement. Cohen’s Kappa was used to evaluate pairwise agreement 
between Rater 1 and Rater 2, Fleiss’ Kappa1 was used to assess multi-rater agreement across all 
three human scores (Original, Rater 1, Rater 2), and Fleiss’ Kappa2 was used to assess multi-
rater agreement across human rescores and AI scores (AI, Rater 1, Rater 2). Table 1 reports 
agreement statistics for each rubric category. 
Table 1．Inter-Rater Reliability Metrics for Scores across Rubric Categories 

 



Substantial to near-perfect inter-rater agreement between Rater 1 and Rater 2 was 
observed in Categories C1, C3, C4, C7, and C8, with Cohen’s Kappa values exceeding .70, 
indicating consistent interpretation of the scoring rubric by independent raters. However, in 
Category C1, despite a perfect Cohen’s Kappa (1.00) between the new raters, the Fleiss’ Kappa1 
was extremely low (0.03). This pattern suggests that both new raters consistently disagreed with 
the original consensus score, revealing a significant instability in the original human scoring for 
that category. By contrast, lower levels of agreement were observed in Categories C5, C6, C9, 
and C10. For example, Category C9 had both low Cohen’s Kappa (0.21) and low Fleiss’ Kappa1 
(0.21), indicating general disagreement among all raters and suggesting potential issues in rubric 
clarity or difficulty in interpreting student responses for that model component. These results 
suggest that while overall human scoring is relatively stable across time in some categories, 
certain rubric elements may suffer from interpretive ambiguity or inconsistent application, 
particularly in flagged cases where student responses challenge straightforward classification. 
This has important implications for both rubric design and the role of human oversight in AI-
assisted assessment systems. 
RQ2. AI-Human Agreement 

To address RQ2, we examined the degree of agreement between the AI-generated scores 
and those produced by human raters after rescoring. Since all selected cases represented flagged 
discrepancies (i.e., AI and original human scores disagreed), we focused on evaluating whether 
the AI’s predictions aligned more closely with the human judgments upon reassessment. 
Fleiss’ Kappa2 was computed for each rubric category across three raters: the AI-predicted 
score, Rater 1, and Rater 2. This inter-rater reliability metric provides insight into the extent to 
which the rescored human judgments validate or diverge from AI-generated assessments. 

Agreement between AI and human scorers remained low across most rubric categories, 
with negative Fleiss’ Kappa2 values in 8 out of 10 categories. Only Categories C1 and C3 
exhibited slightly positive Kappa values, suggesting minimal alignment. The poorest agreement 
was found in C5 (κ = –0.337) and C10 (κ = –0.334), indicating that AI systematically failed to 
align with human judgments in these areas. Based on (Fleiss’ Kappa < 0, but Cohen’s Kappa > 

Category N Flagged 
Cases 

Cohen’s Kappa 
(Rater1 vs Rater2) 

Fleiss’ Kappa1 (Original, 
Rater1, Rater2) 

Fleiss’ Kappa2 (AI, 
Rater1, Rater2) 

C1 15 1.000 0.030 0.154 

C2 10 0.615 0.593 –0.222 

C3 9 0.769 0.365 0.110 

C4 21 0.712 0.744 –0.273 

C5 12 0.211 0.443 –0.337 

C6 28 0.314 0.375 –0.235 

C7 17 0.866 0.748 –0.234 

C8 17 0.757 0.753 –0.255 

C9 20 0.211 0.214 –0.154 

C10 15 0.167 0.351 –0.334 



0.6), we identified four categories that present consistent human-AI disagreement, including C2, 
C4, C7, and C8. These results suggest that AI models trained on human scores may not 
generalize well to ambiguous or edge-case responses—precisely those most often flagged for 
review. This reinforces the need for: Iterative retraining of AI models with rescore data to 
improve boundary-case prediction; Rubric refinement for complex or poorly operationalized 
criteria; Continued human oversight in high-stakes or formative assessment contexts, particularly 
in scoring representations of student reasoning. 
RQ3. Qualitative analysis. 

To address RQ3 (Scoring Inconsistencies)—which aims to uncover the underlying factors 
contributing to persistent disagreement between human and AI scoring—we implemented a 
structured, data-informed qualitative selection and analysis process grounded in our prior 
quantitative results. We began by identifying three distinct types of cases for qualitative follow-
up based on well-defined disagreement patterns among AI and human scores from RQ2. Table 2 
summarizes the logic behind each type and its interpretive value. 

Table 2. Qualitative Case Selection Strategy 

Case Type Selection Logic Interpretive Value 

Persistent AI 
Disagreement 

Original ≠ AI, Rater 1 ≠ AI, 
Rater 2 ≠ AI 

AI systematically disagrees with all human raters, 
suggesting a failure to generalize or interpret certain 
features. 

Human Instability Original ≠ Rater 1, Original ≠ 
Rater 2, Rater 1 ≠ Rater 2 

Indicates potential ambiguity in rubric criteria or 
interpretive differences among raters. 

To identify the specific cases, we used heatmaps to map out each categories flagged cases. 

 

 

 

 

 

 



 

   

 

  



 

RQ3a: When and Why AI and Humans Disagree 
To investigate persistent discrepancies between AI and human scoring, we pull out cases 

where the AI-predicted score disagreed with all three human-derived scores: the original 
consensus score and the independent rescoring from Rater 1 and Rater 2. These cases are 
referred to as “Persistent AI Disagreement” and represent instances in which the AI model failed 
to align with any human judgment. 

 
Table 3. Persistent AI Disagreement Case Summary 

Rubric 
Category 

N Flagged 
Cases 

N Persistent AI 
Disagreement 

Cases 

Case IDs Percent of 
Cases in 

Category (%) 

C1 15 5 147958, 1972, 2462, 2473, 2564 33.3 

C2 10 7 1047787, 1048513, 1877, 2367, 3316, 3382, 3636 70.0 

C3 9 5 1048940, 3118, 3340, 3415, 3523 55.6 

C4 21 17 147958, 2121, 2450, 2457, 2465, 2578, 2912, 2974, 3315, 
3339, 3404, 3534, 3539, 3544, 3585,3603, 3613 

81.0 

C5 12 7 1888, 1985, 2623, 2753, 3435, 3473, 3613 58.3 

C6 28 15 147958, 1979, 1985, 2103, 2515, 2623, 2644, 2683, 2753, 
2922, 3018, 3118, 3132, 3435, 3473 

53.6 

C7 17 14 1048046, 1048722, 1049104, 1049638, 1979, 2103, 2578, 
2644, 2683, 2922, 3018, 3118, 3132, 3287 

82.4 

C8 17 14 147958, 1972, 2121, 2515, 2644, 2683, 2753, 2974, 3132, 
3404, 3435, 3473, 3539, 3613 

82.4 

C9 20 11 1048940, 1049638, 2103, 2457, 2465, 2753, 2922, 2974, 
3132, 3534, 3613 

55.0 

C10 15 9 147958, 1888, 2103, 2450, 2623, 2683, 2974, 3315, 3539 60.0 



RQ3a. To respond to RQ3a, we identified Categories 2, 4, 7, and 8 based on high human 
raters' agreement but persistent disagreement with AI-predicted scores (low Fleiss' Kappa2). 
Using heatmaps generated for each category, we systematically identified persistent AI 
disagreement cases. We then analyzed these cases individually within each category and 
synthesized common themes across the four categories to uncover potential reasons behind 
persistent AI-human scoring disagreements. 

Textual Annotations Not Read by AI. Many students wrote words on their drawings 
(e.g., “no charge” or “electrons go here”). Humans naturally read these and factor them into 
scoring. The CNN, lacking text recognition, sometimes missed the student’s intention. In some 
cases, the human gave credit due to an annotation, whereas the AI, seeing only unrecognized 
pixels, did not. For example, model ID #2079 is illustrative.  

Figure 1. shows this student’s model. The student wrote “less 
charge” near the rod in Scenario A and “more – charge” near Scenario B (note the hand-written 
notes in Figure 1). The human rater credited the student for indicating the difference in charge 
between the scenarios (fulfilling the “differences between scenarios” criterion and partially the 
explanation criterion). The CNN, however, only “saw” that the drawings of the electroscope in A 
and B were essentially identical visually (the leaves look the same in both, and no obvious 
graphical change apart from the small scribbles). It therefore did not mark the difference as 
present. This resulted in a discrepancy: the human score reflected the textual explanation of “less 
vs more charge,” but the AI score treated it as if no difference was shown. This pattern occurred 
in several cases where student handwriting on the image carried key information. In those 
instances, the AI’s limitation in reading text led to under-scoring relative to the human. One 
potential remedy for this in the future would be to incorporate an OCR (optical character 
recognition) component or to have students submit a written explanation separately that the AI 
can analyze in conjunction. 

Unconventional or Abstract Representations. Some students used creative approaches 
that the model was not explicitly trained on. Figure 2 below presents an example, model ID 
#2842, where the student introduced an abstract representation. 

 Figure 2. depicts Scenario A and B for that model. Instead of using 
standard “+” or “–” symbols for charge or drawing the leaves separated, this student drew bold 
black curves inside the jar and labeled them as a “force field.” They also wrote text indicating 



Scenario A is “neutral” and Scenario B has a “strong force field” with “more – charge.” The 
human rater recognized that the student was attempting to convey that Scenario B has a stronger 
effect (more charge, thus some kind of force field causing the leaves to move). It’s partially 
incorrect scientifically (an electroscope isn’t usually described in terms of a force field, and the 
student did not explicitly draw the leaves diverging), so the human gave only partial credit on the 
explanation and did not give credit for correctly showing the leaf separation (since the leaves in 
the drawing remain hanging, possibly an oversight by the student). The CNN, on the other hand, 
was thrown off by the unusual drawing. It saw a lot of extra black markings in Scenario B (the 
“field” lines) which were not present in Scenario A. Because in most training examples, “more 
lines or markings in B” correlated with showing a change or something happening, the model 
falsely assumed this student had depicted the leaves moving or a difference, and it gave credit for 
the scenario difference category where the human did not. This resulted in an AI over-score for 
that category. This case exemplifies an alternative expression issue: a student represented the 
concept in a non-standard way, leading to a mismatch in interpretation. The AI lacks the 
contextual understanding to know those lines were meant as a field (and that this was not what 
the rubric was looking for), whereas a human could make a nuanced judgment. These outlier 
representations often led to AI errors, since the model relied on pattern recognition and had 
difficulty with items outside its learned patterns. 

Ambiguous or Low-Quality Drawings. In some cases, the student’s drawing itself was 
unclear, and the AI and human simply interpreted it differently. For instance, a few students 
drew very light pencil marks or had cluttered sketches. In one case, a small arrow was drawn but 
almost invisible; the human missed it and gave no credit for showing charge movement, but the 
CNN’s image processing (which can detect subtle gradients) actually picked up something in 
that area and erroneously treated it as a valid arrow, thus giving a point. Conversely, there were 
cases where a student’s poorly drawn symbol might have been ignored by the AI (which didn’t 
recognize the shape) but a human deduced what the student meant. These discrepancies were 
essentially due to perceptual ambiguity. They underscore that even humans can disagree on what 
is in the image – and the AI might latch onto visual noise or miss faint details. We found that 
improving image quality (scans) and possibly instructing students to draw clearly could mitigate 
some of these issues for both human and AI scorers. 

RQ3b. To respond to RQ3b, we identified Categories 5, 6, 9, and 10 based on both 
Cohen’s Kappa and Fleiss’ Kappa (Original, R1, and R2), which revealed persistent human-
human disagreement across raters. We examined representative models in each category to 
investigate how differences in interpretation and rubric ambiguity may contribute to human 
scorer instability. 

Imprecise or Ambiguous Force Representation. Across Categories 5 and 10, models 
often used vague or inconsistent force arrows. For instance, Case 2017 (C10) showed arrows in 
both scenarios but failed to make Scenario B arrows clearly larger or bolder than those in 
Scenario A, as required by the rubric. In Category 5, Case 2041 featured bidirectional arrows 
between leaves, which some raters may interpret as electric field representation rather than 
explicit repulsive force. The lack of standardization in arrow size, direction, and meaning led to 
varying interpretations across human raters. 



(#2017)        (#2041) 
Confusion Between Charge Quantity and Effect. Category 6 and 9 models frequently 

blurred the distinction between the quantity of charge and its effect on the system. In Case 2518 
(C6), students illustrated more charges in Scenario B, but without clearly showing charges on rob 
in B are more than rod in A. One rater took notes in the rescoring stage, “Pretty much the same 
amount of charge on each rod.” Thus, this rater gave 0 while the other rater gave 1. Similarly, in 
Category 9, Case 3544 depicted more charges on the leaves in Scenario B, but did not show a 
noticeable difference from Scenario A in spread angle or repulsion, making it difficult for raters 
to judge rubric alignment. This disconnect between charge quantity and observable impact 
introduced subjectivity into scoring. 
 

(#2518)   (#3544) 
 

Implicit Visual Reasoning. In several Category 9 and 10 models, students embedded 
their reasoning in subtle visual cues rather than explicit annotations. For instance, Case 1888 
(C9) used minimal symbols with slight variation in leaf angle between scenarios, requiring raters 
to infer whether the change was intentional and scientifically meaningful. In this case, one rater 
rescored it as “0” and gave rationale of “Charges not on the leaves.” In Case 2017 (C10), arrows 
were drawn in Scenario B, but their placement and boldness were not markedly different from 
Scenario A. Similarly, for Case 2737 (C10), one rater gave “0” given “Arrows not between the 
leaves.” These implicit cues led to inconsistent interpretation among raters who weighed subtle 
visual elements differently. 



 (#1888)    (#2017) 

 (#2737)  
 

Discussion 
Our study examined an AI-assisted scoring approach for complex student-generated 

science models, yielding findings with important implications for educational assessment 
practice and research. We discuss these implications in three areas: (1) rubric and assessment 
design, (2) human-AI collaboration in scoring, and (3) training and refining AI models with 
human feedback. We also consider the broader significance and limitations of this work. 
Implications for Rubric Development and Assessment Design 

The results highlight how the design and clarity of a scoring rubric directly impact both 
human and AI scoring performance. The variability we observed in human rater agreement 
across rubric categories suggests that some aspects of the construct were not as sharply defined 
or were inherently more complex to judge. This calls for rubric refinement: clarifying 
descriptors, providing anchor examples at each score level, or breaking a broad category into 
more discrete sub-components. Our analysis of discrepancies pointed out that certain student 
representations (like text annotations or alternative symbols) were handled inconsistently – 
sometimes credited, sometimes not. A well-tuned rubric could anticipate these possibilities. For 
example, if written labels on a diagram are acceptable evidence for a concept, the rubric (and 
rater training) should explicitly include that. Conversely, if the intention is to have students 
convey an idea visually, the rubric might specify that credit is only given for graphical 
representation, not just written notes. Being explicit about such criteria would likely improve 
human scoring consistency and also make it easier to train AI, which thrives on well-defined 
targets. Moreover, our findings resonate with observations by Zhai et al. (2022), who identified 
representational issues like alternative expressions and confusing labels as factors impacting 
automated scoring. The presence of these factors in our data (e.g., students inventing novel 
notation or using unclear labeling) suggests that test developers and educators should strive to 
design modeling tasks that minimize unnecessary ambiguity. This doesn’t mean limiting student 
creativity, but rather guiding students on how to communicate their ideas clearly. For instance, 



teaching students standard ways to denote charges or encouraging them to include a brief written 
legend for any unique symbols they use could reduce misinterpretation. In essence, improving 
the task design (instructions given to students) can lead to models that are easier to score reliably 
by both humans and machines. Finally, the rubric development process itself might benefit from 
iterative piloting with an AI in the loop. Traditionally, rubric refinement relies on human scoring 
trials and analyzing disagreements (Bresciani et al., 2009). Our study shows that an AI can 
highlight the same troublesome areas. If during rubric design one trains a provisional AI model 
on pilot data, the AI’s confusion can point to rubric criteria that need tightening. For example, if 
the AI has trouble distinguishing scores for a certain category, it might be because the category is 
ill-defined or the features are too subtle – something that might also confuse human raters. In this 
way, AI can act as an “analytical lens” to examine rubric quality. Overall, our work reinforces 
that effective assessment of complex performances like modeling requires careful construct 
definition and may involve an ongoing cycle of rubric revision and training calibration. 
Human–AI Collaboration in Assessment 

Our study provides evidence that human-AI collaboration can combine the strengths of 
each in the scoring process, resulting in more efficient yet trustworthy assessment. The CNN 
model achieved a level of agreement with human scores that was comparable to human rater 
(Rater 2) for many rubric categories. This suggests that AI models, once properly trained, can 
serve as effective assistants or second markers in routine scoring. For instance, in a classroom or 
large-scale exam setting, the AI could score all student models and flag only those cases where it 
is uncertain or where certain rubric criteria are met in unusual ways. A human instructor or 
assessor could then focus their limited time on reviewing these flagged cases. This approach 
could dramatically reduce grading time while maintaining quality. Our findings showed that 
about 22% of responses had any AI-human discrepancy; if an AI flagged roughly that proportion 
for human review, the human would not need to look at the other ~78% that the AI is confident 
on (assuming the AI’s confidence aligns with correctness). In practice, an educator might still 
spot-check some of the AI-graded ones, but the workload would be much lower than grading 
100% from scratch. 

Crucially, we do not advocate for removing the human from the loop. The discrepancies 
we analyzed underscore why human oversight remains vital. AI is prone to particular failure 
modes (like missing meaning in text, or being fooled by odd drawings) that a human can catch. 
Meanwhile, humans have their own inconsistencies or lapses that AI can complement. The ideal 
system is a synergistic partnership: the AI rapidly analyzes and provides preliminary scores or 
identifies likely errors, and the human adjudicates the tricky cases and ensures fairness. This 
aligns with emerging regulations and ethical guidelines which mandate that algorithmic 
decisions in education be subject to human review (Nguyen, 2025). By designing a workflow 
where AI handles the heavy lifting and humans handle the edge cases, we satisfy the requirement 
for human oversight while leveraging AI’s efficiency. Such a human-AI collaborative approach 
has been suggested in other domains (e.g., essay scoring or even medical diagnosis) as yielding 
better outcomes than either alone (European Commission, 2021). Our concrete results add 
credibility to this approach in the context of scoring student diagrams: we’ve shown the AI can 
match human judgment for the majority of straightforward cases and that the exceptions are 
manageable with targeted human attention. 

From a practical standpoint, implementing human-AI collaboration could involve an 
interface for teachers where the AI scores are presented alongside indicators of confidence or 
flags for unusual features. Teachers could then quickly review those flagged by the system. This 



not only saves time but can also function as professional development – by examining cases 
where the AI had trouble, teachers might become aware of common student misconceptions or 
creative strategies that they hadn’t considered. In our study, reviewing AI-human discrepancies 
was illuminating; a teacher doing the same in real-time could similarly gain insights and adjust 
instruction. In sum, the role of AI here is to augment the human grader, not replace them, in line 
with the principle of maintaining fairness and transparency in AI-assisted education. 
Improving AI Models with Human-in-the-Loop Feedback 

A key contribution of this work is highlighting how human review data can be used to 
iteratively improve AI scoring models. During our analysis, we effectively performed an error 
analysis on the AI’s outputs and used human judgment to categorize those errors. This kind of 
information is extremely valuable for refining the model. For example, once we identified that 
the CNN systematically missed text, one straightforward step for future model versions would be 
integrating an OCR module or a multi-modal model that processes text and images together. 
Similarly, knowing that the model misinterpreted certain abstract drawings, we could incorporate 
more diverse training examples or apply data augmentation techniques to expose the model to a 
wider range of representations. In general, every discrepancy case is an opportunity: if a human 
can determine the correct outcome, that example (originally mis-predicted by the model) can be 
added to the training set for the next iteration. This is a form of active learning or targeted 
retraining, where the focus is on model weaknesses. 

One strategy in this vein, suggested by others, is to deliberately sample additional 
training data from cases the model finds challenging (von Davier et al., 2022). In large-scale 
assessments, one could use an approach where after an initial model is trained, a subset of 
responses (especially those where the model’s confidence is low or it disagrees with a human 
rater) is sent to human experts for re-scoring. These newly confirmed labels then feed back into 
the model for retraining, hopefully improving its accuracy on those and similar cases. Our results 
support the efficacy of such a strategy: we saw that many of the model’s errors were systematic, 
not one-off random noise. This means the model could likely learn from additional examples. 
For instance, providing the model with several examples of the “force field” type drawing (with 
correct labels indicating it does not count as showing the expected phenomenon) would help it 
adjust its internal representation and not give credit erroneously in the future. Over time, this 
human-in-the-loop training could greatly reduce the discrepancy rate. Essentially, the model 
becomes more robust by learning from the very cases that initially confounded it. 

We also recognize that there is a limit to how much a purely image-based CNN can learn 
if some information is simply not present in the pixels (e.g., semantic meaning of words). Thus, 
another improvement direction is to broaden the AI’s capabilities – for example, combining 
computer vision with natural language processing for a multi-modal scoring system. If students 
provide a separate written explanation along with the drawing (as was the case in some modeling 
tasks in other studies), an AI could analyze both and perhaps achieve deeper understanding. In 
our scenario, if no separate text is provided, an advanced model like a Vision Transformer or 
GPT-4V (vision-enabled language model) could be prompted with the image and rubric to 
generate scores (Chu et al., under review). Early research in this area (e.g., using GPT-4 Vision 
to evaluate drawings) indicates potential, though it also underscores the need for clear rubric 
instructions to guide the AI. Regardless of the specific technique, the common theme is that 
incorporating human insights (either by labeling data or encoding rules derived from human 
expertise) is essential for developing AI systems that are accurate, fair, and aligned with 
educational values. 

https://arxiv.org/search/cs?searchtype=author&query=von+Davier,+M


Theoretical and Practical Significance 
The outcomes of this study contribute to both the theory and practice of educational 

measurement in science. Theoretically, we add to the growing evidence that complex 
performance assessments can be reliably scored with the assistance of AI, which challenges the 
traditional notion that only selected-response or constrained tasks can be objectively graded. We 
show that with a detailed rubric and enough training data, even something as rich as a student’s 
scientific drawing – which encapsulates a mix of conceptual understanding and creativity – can 
be assessed consistently. This opens up possibilities for broader use of performance tasks in 
science classrooms, alleviating the assessment burden that often limits their use. Our work also 
highlights an emerging conceptualization of reliability: when considering AI as part of the 
assessment process, one must consider AI-human agreement as analogous to inter-rater 
reliability. High AI-human agreement (especially approaching human-human agreement levels) 
can be interpreted as evidence of validity and consistency in the scoring process. Some scholars 
have even suggested that AI could serve as a “third rater” in validation studies of scoring, 
offering another lens on the reliability of scoring rubrics. We provide concrete data in this 
regard, and also nuance the interpretation by showing where AI and human differences revealed 
potential issues with the task or rubric. 

Practically, for educators and assessment designers, our study offers a proof of concept 
and a set of guidelines for implementing AI-assisted scoring in a responsible manner. By 
identifying the types of rubric criteria that are amenable to AI scoring versus those that are 
tricky, one can design assessments that play to AI’s strengths (e.g., visual pattern recognition of 
structures) and plan for human oversight on the subtle parts (e.g., interpreting reasoning). The 
guidelines emerging from our findings include: (1) Design rubrics with clear, observable 
indicators – this benefits both human and AI scoring. (2) Use AI as an initial scorer or second 
rater to significantly reduce grading time, but always include a mechanism for human review of 
flagged cases to catch the nuance AI might miss. (3) Continuously improve the AI model by 
analyzing its errors and feeding it additional training data or rules, especially focusing on 
systematic discrepancies (our analysis template could serve as a model for educators to 
periodically audit their AI’s performance). (4) Maintain transparency with students – if AI is 
used in grading, inform students and, where possible, provide explanations for scores. 
Interestingly, AI can be used not just for scoring but as a feedback tool: for example, if an AI can 
detect that a student didn’t show a difference between scenarios, it could automatically prompt 
the student to reconsider their model, thus acting as a formative feedback system. This blends 
assessment with learning in a powerful way. 

Limitations and Future Work 
It is important to acknowledge the limitations of this study. First, the scope was a single 

type of modeling task in physics. The extent to which our results generalize to other science 
topics or different kinds of representations (e.g., ecosystem models, anatomical diagrams, etc.) 
needs investigation. Different tasks might introduce new challenges for rubrics and AI (for 
instance, coloring, 3D perspectives, etc., not present in our electroscope task). Second, our CNN 
model, while effective, was relatively domain-specific and did not incorporate text analysis. 
Future work could explore more advanced or generalizable models, such as those using both 
vision and language capabilities, to handle multi-modal student responses. Third, in our study the 
human was considered the gold standard. We did not undertake a separate expert resolution of 
discrepancies beyond our analysis; in an operational setting, one might convene experts to 



adjudicate each AI-human disagreement to build an even higher-quality dataset for training. 
Doing so could further improve model performance but was beyond our research scope. 
Another limitation is that we did not deeply examine potential biases in AI scoring with respect 
to student subgroups. All students drew the same scenario, but it is possible that, for example, 
students with better drawing skills or English annotations were advantaged. While not directly 
observed, this is an area for cautious examination in any automated scoring system – ensuring 
that the model isn’t inadvertently favoring neat drawings over messy ones in a way that doesn’t 
correlate to actual understanding. Our recommendation of maintaining human oversight helps 
mitigate high-stakes risks here, but further bias analysis would strengthen confidence in such AI 
systems. 

For future research, an exciting direction is to implement the human-AI collaborative 
scoring in real classroom settings. Studies could measure how teachers interact with such 
systems, the time saved, and any impact on student outcomes (e.g., does faster feedback from AI 
improve student learning or engagement in modeling?). It would also be valuable to explore 
students’ perceptions: are students comfortable with AI involved in assessment and does it affect 
how they approach tasks? From a technical perspective, future work might compare different AI 
approaches (e.g., CNN vs. transformer models, or the use of synthetic training data to cover rare 
scenarios) to determine what methods yield the best reliability and validity in scoring. Finally, 
expanding the rubric and model to assess the quality of models (beyond checking for specific 
features) would move closer to more holistic assessment. For example, can AI judge the 
coherence or completeness of a model explanation? That remains a difficult challenge, but 
progress in AI may eventually support it, especially if combined with human insight. 

Conclusion 
This study demonstrates that AI-assisted assessment of student-drawn scientific models is not 
only feasible but can achieve a level of consistency comparable to human scoring, even on 
complex, open-ended tasks. By systematically comparing human and CNN-based scoring on a 
13-category rubric, we found that the AI can mirror human judgments in many areas and that 
discrepancies, when they occur, carry meaning – highlighting either limitations of the AI or 
ambiguities in the task that can be addressed. The involvement of AI offers practical benefits in 
efficiency, yet our findings reinforce that the best outcomes arise from a thoughtful integration of 
human expertise and AI efficiency. In an era where educational AI is rapidly advancing, we 
provide an example of harnessing that technology to enhance assessment while upholding the 
principles of fairness, transparency, and pedagogical soundness. We hope this work serves as a 
foundation for further innovation in assessment practices, enabling educators to more readily use 
rich modeling and other performance tasks to deepen science learning, confident that they have 
reliable tools to assess student understanding. The partnership of teachers and AI, as evidenced 
here, holds great promise for the future of learning analytics and educational measurement in 
STEM education. 
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